
Linear Algebra II

06/05/2014, Monday, 18:30-21:30

You are NOT allowed to use any type of calculators.

 (8 + 10 = 18 pts) Inner product spaces

(a) Let V be an inner product space. Find real numbers a and b such that the so-called Apol-
lonius’ identity

‖z − x‖2 + ‖z − y‖2 = a‖x− y‖2 + b‖z − x+ y

2
‖2

holds for any triple x, y, and z in V .

(b) Consider the vector space C[−1, 1] with the inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x) dx.

Find the best approximation of the constant function 1 within the subspace spanned by the
vectors x and |x|.

Required Knowledge: inner product, Gram-Schmidt process

Solution:

(1a):
The left hand side can be written as

2〈z, z〉+ 〈x, x〉+ 〈y, y〉 − 〈x, z〉 − 〈z, x〉 − 〈y, z〉 − 〈z, y〉.

In addition the right hand side is

a(〈x, x〉+ 〈y, y〉 − 〈x, y〉 − 〈y, x〉) + b(〈z, z〉+ 〈x+ y

2
,
x+ y

2
〉 − 〈z, x+ y

2
〉 − 〈x+ y

2
, z〉)

= b〈z, z〉+

(
1

4
b+ a

)
(〈x, x〉+ 〈y, y〉) +

(
1

4
b− a

)
(〈x, y〉+ 〈y, x〉)− 1

2
b (〈z, x〉+ 〈x, z〉+ 〈z, y〉+ 〈y, z〉) .

We get that the following should hold:

b = 2
1
4b+ a = 2
1
4b− a = 0

1
2b = 2,

which only hold for a = 1
2 and b = 2.

Remark. In real inner product space the left hand side is

2〈z, z〉+ 〈x, x〉+ 〈y, y〉 − 2〈x, z〉 − 2〈y, z〉

and the right hand side is

= b〈z, z〉+

(
1

4
b+ a

)
(〈x, x〉+ 〈y, y〉) +

(
1

2
b− 2a

)
(〈x, y〉)− b (〈z, x〉+ 〈z, y〉) .



(1b): Note that
〈x, |x|〉 = 0.

As such, these two vectors are orthogonal. In order to obtain an orthonormal basis, we first
compute the norms:

‖x‖2 = ‖|x|‖2 =

∫ 1

−1

x2 dx =
x3

3
|1−1 =

2

3
.

Therefore, the vectors

√
3√
2
x and

√
3√
2
|x| form an orthonormal basis. So, the best approximation of

the constant function 1 within the mentioned subspace can be found as:

p = 〈1,
√

3√
2
x〉
√

3√
2
x+ 〈1,

√
3√
2
|x|〉
√

3√
2
|x| = 3

2
〈1, x〉x+

3

2
〈1, |x|〉|x| = 3

2
|x|.



 (13 + 5 = 18 pts) Singular value decomposition

Consider the matrix

M =


1 0 1
1 1 −1
−1 1 0

0 1 1

 .
(a) Find a singular value decomposition for M .

(b) Find the best rank 2 approximation of M .

Required Knowledge: singular value decomposition, lower rank approximations

Solution:

(2a): Note that

MTM =

3 0 0
0 3 0
0 0 3

 .
As such, we obtain

σ1 = σ2 = σ3 =
√

3.

This mans that

Σ =


√

3 0 0

0
√

3 0

0 0
√

3
0 0 0

 and V =

1 0 0
0 1 0
0 0 1


By using the formula

ui =
1

σi
Mvi

for i = 1, 2, 3, we get

u1 =
1√
3


1
1
−1

0

 u2 =
1√
3


0
1
1
1

 u3 =
1√
3


1
−1

0
1

 .
By solving MTu4 = 0, we obtain

u4 =
1√
3


1
0
1
−1

 .
Thus, a singular value decomposition can be given by

M =
1√
3


1 0 1 1
1 1 −1 0
−1 1 0 1

0 1 1 −1


√3 0 0

0
√

3 0

0 0
√

3

1 0 0
0 1 0
0 0 1

 .
(2b): One such approximation can be found as

1√
3


1 0 1 1
1 1 −1 0
−1 1 0 1

0 1 1 −1



√

3 0 0

0
√

3 0
0 0 0
0 0 0


1 0 0

0 1 0
0 0 1

 =


1 0 0
1 1 0
−1 1 0

0 1 0

 .



 (2 + 4 + 4 + 4 + 4 = 18 pts) Eigenvalues

Suppose that a matrix has the characteristic polynomial

p(λ) = λ(λ+ 2)(λ2 + 1).

Prove that this matrix is

(a) singular.

(b) diagonalizable.

(c) NOT symmetric.

(d) NOT skew-symmetric.

(e) NOT orthogonal.

Required Knowledge: eigenvalues/vectors, diagonalizability, (skew-)symmetric
matrices, orthogonal matrices.

Solution:

(3a): From the characteristic polynomial we can deduce that the eigenvalues of the matrix are 0,
−2, i and −i. Since 0 is an eigenvalue, the matrix is singular.

(3b): Since the matrix has distinct eigenvalues, it is diagonalizable.

(3c): A symmetric matrix has real eigenvalues. Since this matrix has as i and −i among its
eigenvalues, the matrix can not be symmetric.

(3d): Suppose that a matrix A is skew-symmetric and let λ be an eigenvalue of A with a corre-
sponding eigenvector x. In general, we have

x∗Ax = x∗λx = λ‖x‖2

x∗ATx = (Ax̄)Tx = λ̄‖x‖2.

Since a skew-symmetric matrix satisfies AT = −A, it follows that

λ̄‖x‖2 = x∗ATx = −x∗Ax = −λ‖x‖2.

Hence, λ̄ = −λ, so Re(λ) = 0. It follows that all eigenvalues of a skew-symmetric matrix are
purely imaginary. Since the matrix in question has −2 among its eigenvalues, it can not be skew-
symmetric.

Alternatively, if λ is an eigenvalue of A it is also an eigenvalue of AT . If the matrix A is
skew-symmetric, we have AT = −A, and hence λ is also an eigenvalue of −A. Consequently, −λ is
an eigenvalue of A. So we see that if λ is an eigenvalue of a skew-symmetric matrix, then −λ is as
well. The matrix in question has −2 as one of its eigenvalues, but 2 is not one of its eigenvalues.
Hence, the matrix is not skew-symmetric.

(3e): An orthogonal matrix is non-singular. Since this matrix is singular, it can not be orthogonal.

Alternatively, every eigenvalue λ of an orthogonal matrix satisfies |λ| = 1. The matrix in
question has 0 and −2 as eigenvalues, which do not satisfy this condition, hence the matrix is not
orthogonal.



 (8 + 10 = 18 pts) Positive definiteness

Let a be a real number. Determine all values of a such that the matrix1 a 1
a a a+ 1
1 a+ 1 1


is

(a) positive definite.

(b) negative definite.

Required Knowledge: Positive definite matrices, the principal minor test.

Solution:

(4a): A symmetric matrix is positive definite if and only if all its principal minors are positive.
Note that

det(1) = 1 det(

[
1 a
a a

]
) = a−a2 det(

1 a 1
a a a+ 1
1 a+ 1 1

) = a+2a(a+1)−a−a2−(a+1)2 = −1.

Therefore, this matrix cannot be positive definite for any values of a

(4b): A symmetric matrix M is negative definite definite if and only if −M is positive definite.
Hence, we can apply the minor test for the negative of the matrix. Note that

det(−1) = −1.

As such, this matrix is never negative definite.



 (3 + 5 + 10 = 18 pts) Jordan canonical form

Consider the matrix 
2 2 0 −1
0 0 0 1
1 5 2 −1
0 −4 0 4

 .
(a) Show that the characteristic polynomial is p(λ) = (λ− 2)4.

(b) Is it diagonalizable? Why?

(c) Put it into the Jordan canonical form.

Required Knowledge: diagonalization, Jordan canonical form.

Solution:

(5a): Note that

det(


2− λ 2 0 −1

0 −λ 0 1
1 5 2− λ −1
0 −4 0 4− λ

) = (2− λ) det(

2− λ 2 −1
0 −λ 1
0 −4 4− λ

)

= (2− λ)2 det(

[
−λ 1
−4 4− λ

]
)

= (2− λ)2(−4λ+ λ2 + 4) = (2− λ)4.

(5b): To compute eigenvalues, we need to solve the linear equations
0 2 0 −1
0 −2 0 1
1 5 0 −1
0 −4 0 2

x = 0.

This is equivalent to 
1 5 0 −1
0 2 0 −1
0 0 0 0
0 0 0 0

x = 0.

Thus, there are two linearly independent eigenvectors, for instance

x1 =


0
0
1
0

 and x2 =


−3

1
0
2

 .
Consequently, diagonalization is impossible.

(5c): Note that
0 2 0 −1
0 −2 0 1
1 5 0 −1
0 −4 0 2


2

=


0 0 0 0
0 0 0 0
0 −2 0 2
0 0 0 0

 and


0 2 0 −1
0 −2 0 1
1 5 0 −1
0 −4 0 2


3

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Now, we try to solve one of the following line equations

0 0 0 0
0 0 0 0
0 −2 0 2
0 0 0 0

 y =


0
0
1
0

 or


0 0 0 0
0 0 0 0
0 −2 0 2
0 0 0 0

 y =


−3

1
0
2

 .



Clearly the latter has no solution whereas

y =


0
0
0
1
2


solves the former. Thus, we have

0
0
0
1
2

 ,


0 2 0 −1
0 −2 0 1
1 5 0 −1
0 −4 0 2




0
0
0
1
2

 =


− 1

2
1
2
− 1

2
1

 ,


0 2 0 −1
0 −2 0 1
1 5 0 −1
0 −4 0 2


2 

0
0
0
1
2

 =


0
0
1
0


as a Jordan chain. Thus, we get

2 2 0 −1
0 0 0 1
1 5 2 −1
0 −4 0 4




0 − 1
2 0 −3

0 1
2 0 1

1 − 1
2 0 0

0 1 1
2 2

 =


0 − 1

2 0 −3
0 1

2 0 1
1 − 1

2 0 0
0 1 1

2 2




2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2

 .


