Linear Algebra II
06/05/2014, Monday, 18:30-21:30

You are NOT allowed to use any type of calculators.

1 (8410 =18 pts) Inner product spaces

(a) Let V be an inner product space. Find real numbers a and b such that the so-called Apol-
lonius’ identity
r+y
Iz = 2| + 2 = yl* = allz — y|I* + b2 — ==
holds for any triple z, y, and z in V.

(b) Consider the vector space C[—1, 1] with the inner product

(f,9) :/_1 f(x)g(x) d.

Find the best approximation of the constant function 1 within the subspace spanned by the
vectors x and |x|.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process

SOLUTION:

(1a):

The left hand side can be written as

2z, 2) + {x,z) + {y,y) — (z,2) — (z,2) — (y,2) — (2,y).
In addition the right hand side is

alfa, ) + {5} = (@,9) — ,2) +b((z, 2+ (52, oY) — (2, T2 (T )

= 2.2)+ (30 ) (o )+ (0= 0) G+ () = 5002 + (02) 4 G+ (2.

We get that the following should hold:

b = 2
%b—&—a = 2
Zb_a = 0

1

ib = 2,

which only hold for a = % and b= 2.
Remark. In real inner product space the left hand side is

2('27 Z> + <.7},.Z'> + <yay> - 2<.’17, Z) - 2<ya Z>
and the right hand side is

—e2)+ (30 a) (o + )+ (50 20) (o) = 0Gs2) + o).



(1b): Note that
(z, |z[) = 0.

As such, these two vectors are orthogonal. In order to obtain an orthonormal basis, we first
compute the norms:

1 3
T
1 = |||=[* =/ 2? do = 3
—1

3 3
Therefore, the vectors ix and £|31c| form an orthonormal basis. So, the best approximation of

the constant function 1 within the mentioned subspace can be found as:

p= (1 o) Vot 1, 2pel) Yl = S{L e + S (L el = el




2 (1345 =18 pts) Singular value decomposition

Consider the matrix

1 0 1
11 -1
M= -1 1 0
0 1 1

(a) Find a singular value decomposition for M.

(b) Find the best rank 2 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations

SOLUTION:
(2a): Note that

As such, we obtain

This mans that

V3 0 0
1 00
0 V3 0
3= and V=10 1 0
0 0 0
By using the formula
ubszz)i
for i =1,2,3, we get
1 0 1
1 1 11 1 -1
Sl e el A
0 1 1
By solving MTuy = 0, we obtain
1
1 0
Ug ﬁ 1
-1
Thus, a singular value decomposition can be given by
o I R 1 B
1 1 1 -1 0
M=— 0 v3 0[]0 10
L R R
0 1 1 -1
(2b): One such approximation can be found as
1o 1 1][v3 00 100
1 00
AT =100 V3O, olo] T LO
\/371101000001_—110
0 1 1 -1 0 0 0 010




3 (2+4+4+4+4+4=18pts) Eigenvalues

Suppose that a matrix has the characteristic polynomial
p(A) = AMA+2)(A* +1).

Prove that this matrix is
(a) singular.
(b) diagonalizable.

)
)
(¢) NOT symmetric.
(d) NOT skew-symmetric.
)

(e) NOT orthogonal.

REQUIRED KNOWLEDGE: eigenvalues/vectors, diagonalizability, (skew-)symmetric
matrices, orthogonal matrices.

SOLUTION:

(3a): From the characteristic polynomial we can deduce that the eigenvalues of the matrix are 0,
—2, i and —i. Since 0 is an eigenvalue, the matrix is singular.

(3b): Since the matrix has distinct eigenvalues, it is diagonalizable.

(3¢): A symmetric matrix has real eigenvalues. Since this matrix has as i and —i among its
eigenvalues, the matrix can not be symmetric.

(3d): Suppose that a matrix A is skew-symmetric and let A be an eigenvalue of A with a corre-
sponding eigenvector x. In general, we have

r*Ax = r*dx = M|z|]?

z*ATe = (Az)Tx = \||z|°.

Since a skew-symmetric matrix satisfies A7 = —A, it follows that
Mzl = 2*ATe = —2* Az = —\|z||2.
Hence, A = —\, so Re(\) = 0. It follows that all eigenvalues of a skew-symmetric matrix are

purely imaginary. Since the matrix in question has —2 among its eigenvalues, it can not be skew-
symmetric.

Alternatively, if A is an eigenvalue of A it is also an eigenvalue of AT. If the matrix A is
skew-symmetric, we have AT = —A, and hence ) is also an eigenvalue of —A. Consequently, —\ is
an eigenvalue of A. So we see that if A is an eigenvalue of a skew-symmetric matrix, then —X\ is as
well. The matrix in question has —2 as one of its eigenvalues, but 2 is not one of its eigenvalues.
Hence, the matrix is not skew-symmetric.

(3e): An orthogonal matrix is non-singular. Since this matrix is singular, it can not be orthogonal.
Alternatively, every eigenvalue A of an orthogonal matrix satisfies |A\| = 1. The matrix in

question has 0 and —2 as eigenvalues, which do not satisfy this condition, hence the matrix is not
orthogonal.




4 (8410 =18 pts) Positive definiteness

Let a be a real number. Determine all values of a such that the matrix

1 a 1
a a a+1
1 a+1 1

is
(a) positive definite.

(b) negative definite.

REQUIRED KNOWLEDGE: Positive definite matrices, the principal minor test.

SOLUTION:

(4a): A symmetric matrix is positive definite if and only if all its principal minors are positive.
Note that

1 a 1
det(l) =1 det 1 a =a—a’ det(|a a a+1]) =a+2a(a+1)—a—a’—(a+1)? = —1.
a a
1 a+1 1

Therefore, this matrix cannot be positive definite for any values of a

(4b): A symmetric matrix M is negative definite definite if and only if —M is positive definite.
Hence, we can apply the minor test for the negative of the matrix. Note that

det(—1) = —1.

As such, this matrix is never negative definite.




5 (3+5+10=18 pts) Jordan canonical form

Consider the matrix

2 2 0 -1
0 0 0 1
1 5 2 -1
0 -4 0 4

(a) Show that the characteristic polynomial is p(A) = (A — 2)%.
(b) Is it diagonalizable? Why?

(¢) Put it into the Jordan canonical form.

REQUIRED KNOWLEDGE: diagonalization, Jordan canonical form.

SOLUTION:

(5a): Note that

I ST
det( L5 2.1 71):(2—)\)det( 0 —A 1)
0 —4 0 4—\ 0 —4 4-2

—4 44—\
=2-N2 (=42 + X +4)=(2- M4

— (2= \) det( {‘A 1])

(5b): To compute eigenvalues, we need to solve the linear equations

0 2 0 -1
0 -2 0 1
1 50 —1|*=0
0 -4 0 2
This is equivalent to
1 5 0 -1
0 2 0 -1
000 o*"
0 0 O 0
Thus, there are two linearly independent eigenvectors, for instance
0 -3
0 1
T = and o = 0
0 2
Consequently, diagonalization is impossible.
(5¢): Note that
0 20 —-11> o 00 0 o 20 -11> o 00 0
0 -2 0 1f 1|0 Oooand0_201*0000
1 5 0 =11 |0 =2 0 2 1 5 0 =1 |0 0 0 O
0 —4 0 2 0 0 0 O 0 —4 0 2 0 0 0O
Now, we try to solve one of the following line equations
0 0 0 O 0 0 0 0O -3
o 00 ol _|o 0 00 o0 |1
0 -2 0 2|7 (1] " o —2 0 2|/Y7| o
0 0 0 O 0 0 0 0O 2



Clearly the latter has no solution whereas

solves the former. Thus, we have

2 0 -1
-2 0 1
5 0 -1
-4 0 2

0
0
1
0

1
— | o e ™
| ,
S
Il
1

O O O -

0 2 0 -1
0 -2 0 1
’ 1 5 0 -1
0 -4 0 2
as a Jordan chain. Thus, we get

O O O -l

O O O N
O — AN O
— AN O O
fe oo,

— — 1
MmN — O N
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O O O~

— O = e
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